scipy.ndimage.standard_deviation¶
- 
scipy.ndimage.standard_deviation(input, labels=None, index=None)[source]¶
- Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions. - Parameters: - input : array_like - Nd-image data to process. - labels : array_like, optional - Labels to identify sub-regions in input. If not None, must be same shape as input. - index : int or sequence of ints, optional - labels to include in output. If None (default), all values where labels is non-zero are used. - Returns: - standard_deviation : float or ndarray - Values of standard deviation, for each sub-region if labels and index are specified. - Examples - >>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> from scipy import ndimage >>> ndimage.standard_deviation(a) 2.7585095613392387 - Features to process can be specified using labels and index: - >>> lbl, nlbl = ndimage.label(a) >>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1)) array([ 1.479, 1.5 , 3. ]) - If no index is given, non-zero labels are processed: - >>> ndimage.standard_deviation(a, lbl) 2.4874685927665499 
