scipy.stats.wald¶
-
scipy.stats.wald= <scipy.stats._continuous_distns.wald_gen object>[source]¶ A Wald continuous random variable.
As an instance of the
rv_continuousclass,waldobject inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
waldis:wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))
for
x > 0.waldis a special case ofinvgausswithmu == 1.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
locandscaleparameters. Specifically,wald.pdf(x, loc, scale)is identically equivalent towald.pdf(y) / scalewithy = (x - loc) / scale.Examples
>>> from scipy.stats import wald >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> mean, var, skew, kurt = wald.stats(moments='mvsk')
Display the probability density function (
pdf):>>> x = np.linspace(wald.ppf(0.01), ... wald.ppf(0.99), 100) >>> ax.plot(x, wald.pdf(x), ... 'r-', lw=5, alpha=0.6, label='wald pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf:>>> rv = wald() >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdfandppf:>>> vals = wald.ppf([0.001, 0.5, 0.999]) >>> np.allclose([0.001, 0.5, 0.999], wald.cdf(vals)) True
Generate random numbers:
>>> r = wald.rvs(size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(loc=0, scale=1, size=1, random_state=None)Random variates. pdf(x, loc=0, scale=1)Probability density function. logpdf(x, loc=0, scale=1)Log of the probability density function. cdf(x, loc=0, scale=1)Cumulative distribution function. logcdf(x, loc=0, scale=1)Log of the cumulative distribution function. sf(x, loc=0, scale=1)Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).logsf(x, loc=0, scale=1)Log of the survival function. ppf(q, loc=0, scale=1)Percent point function (inverse of cdf— percentiles).isf(q, loc=0, scale=1)Inverse survival function (inverse of sf).moment(n, loc=0, scale=1)Non-central moment of order n stats(loc=0, scale=1, moments='mv')Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(loc=0, scale=1)(Differential) entropy of the RV. fit(data, loc=0, scale=1)Parameter estimates for generic data. expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)Expected value of a function (of one argument) with respect to the distribution. median(loc=0, scale=1)Median of the distribution. mean(loc=0, scale=1)Mean of the distribution. var(loc=0, scale=1)Variance of the distribution. std(loc=0, scale=1)Standard deviation of the distribution. interval(alpha, loc=0, scale=1)Endpoints of the range that contains alpha percent of the distribution