scipy.stats.skewtest¶
- 
scipy.stats.skewtest(a, axis=0, nan_policy='propagate')[source]¶
- Tests whether the skew is different from the normal distribution. - This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. - Parameters: - a : array - The data to be tested - axis : int or None, optional - Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a. - nan_policy : {‘propagate’, ‘raise’, ‘omit’}, optional - Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’. - Returns: - statistic : float - The computed z-score for this test. - pvalue : float - a 2-sided p-value for the hypothesis test - Notes - The sample size must be at least 8. - References - [R637] - R. B. D’Agostino, A. J. Belanger and R. B. D’Agostino Jr., “A suggestion for using powerful and informative tests of normality”, American Statistician 44, pp. 316-321, 1990. 
