scipy.stats.poisson¶
-
scipy.stats.poisson= <scipy.stats._discrete_distns.poisson_gen object>[source]¶ A Poisson discrete random variable.
As an instance of the
rv_discreteclass,poissonobject inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability mass function for
poissonis:poisson.pmf(k) = exp(-mu) * mu**k / k!
for
k >= 0.poissontakesmuas shape parameter.The probability mass function above is defined in the “standardized” form. To shift distribution use the
locparameter. Specifically,poisson.pmf(k, mu, loc)is identically equivalent topoisson.pmf(k - loc, mu).Examples
>>> from scipy.stats import poisson >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> mu = 0.6 >>> mean, var, skew, kurt = poisson.stats(mu, moments='mvsk')
Display the probability mass function (
pmf):>>> x = np.arange(poisson.ppf(0.01, mu), ... poisson.ppf(0.99, mu)) >>> ax.plot(x, poisson.pmf(x, mu), 'bo', ms=8, label='poisson pmf') >>> ax.vlines(x, 0, poisson.pmf(x, mu), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pmf:>>> rv = poisson(mu) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Check accuracy of
cdfandppf:>>> prob = poisson.cdf(x, mu) >>> np.allclose(x, poisson.ppf(prob, mu)) True
Generate random numbers:
>>> r = poisson.rvs(mu, size=1000)
Methods
rvs(mu, loc=0, size=1, random_state=None)Random variates. pmf(k, mu, loc=0)Probability mass function. logpmf(k, mu, loc=0)Log of the probability mass function. cdf(k, mu, loc=0)Cumulative distribution function. logcdf(k, mu, loc=0)Log of the cumulative distribution function. sf(k, mu, loc=0)Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).logsf(k, mu, loc=0)Log of the survival function. ppf(q, mu, loc=0)Percent point function (inverse of cdf— percentiles).isf(q, mu, loc=0)Inverse survival function (inverse of sf).stats(mu, loc=0, moments='mv')Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(mu, loc=0)(Differential) entropy of the RV. expect(func, args=(mu,), loc=0, lb=None, ub=None, conditional=False)Expected value of a function (of one argument) with respect to the distribution. median(mu, loc=0)Median of the distribution. mean(mu, loc=0)Mean of the distribution. var(mu, loc=0)Variance of the distribution. std(mu, loc=0)Standard deviation of the distribution. interval(alpha, mu, loc=0)Endpoints of the range that contains alpha percent of the distribution