scipy.special.mathieu_odd_coef(m, q)[source]

Fourier coefficients for even Mathieu and modified Mathieu functions.

The Fourier series of the odd solutions of the Mathieu differential equation are of the form

\[\mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z\]
\[\mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z\]

This function returns the coefficients \(B_{(2n+2)}^{(2k+2)}\) for even input m=2n+2, and the coefficients \(B_{(2n+1)}^{(2k+1)}\) for odd input m=2n+1.


m : int

Order of Mathieu functions. Must be non-negative.

q : float (>=0)

Parameter of Mathieu functions. Must be non-negative.


Bk : ndarray

Even or odd Fourier coefficients, corresponding to even or odd m.


[R492]Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996.