Previous topic


Next topic



scipy.special.jve(v, z) = <ufunc 'jve'>

Exponentially scaled Bessel function of order v.

Defined as:

jve(v, z) = jv(v, z) * exp(-abs(z.imag))

v : array_like

Order (float).

z : array_like

Argument (float or complex).


J : ndarray

Value of the exponentially scaled Bessel function.


For positive v values, the computation is carried out using the AMOS [R460] zbesj routine, which exploits the connection to the modified Bessel function \(I_v\),

\[ \begin{align}\begin{aligned}J_v(z) = \exp(n\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)\\J_v(z) = \exp(-n\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)\end{aligned}\end{align} \]

For negative v values the formula,

\[J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)\]

is used, where \(Y_v(z)\) is the Bessel function of the second kind, computed using the AMOS routine zbesy. Note that the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values such that v = floor(v).


[R460](1, 2) Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”,