scipy.special.eval_legendre¶
-
scipy.special.eval_legendre(n, x, out=None) = <ufunc 'eval_legendre'>¶ Evaluate Legendre polynomial at a point.
The Legendre polynomials can be defined via the Gauss hypergeometric function \({}_2F_1\) as
\[P_n(x) = {}_2F_1(-n, n + 1; 1; (1 - x)/2).\]When \(n\) is an integer the result is a polynomial of degree \(n\).
Parameters: n : array_like
Degree of the polynomial. If not an integer, the result is determined via the relation to the Gauss hypergeometric function.
x : array_like
Points at which to evaluate the Legendre polynomial
Returns: P : ndarray
Values of the Legendre polynomial
See also
roots_legendre- roots and quadrature weights of Legendre polynomials
legendre- Legendre polynomial object
hyp2f1- Gauss hypergeometric function
numpy.polynomial.legendre.Legendre- Legendre series