scipy.signal.TransferFunction¶
-
class
scipy.signal.TransferFunction(*system, **kwargs)[source]¶ Linear Time Invariant system class in transfer function form.
Represents the system as the continuous-time transfer function \(H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j\) or the discrete-time transfer function \(H(s)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j\), where \(b\) are elements of the numerator
num, \(a\) are elements of the denominatorden, andN == len(b) - 1,M == len(a) - 1.TransferFunctionsystems inherit additional functionality from thelti, respectively thedlticlasses, depending on which system representation is used.Parameters: *system: arguments
The
TransferFunctionclass can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation:- 1:
ltiordltisystem: (StateSpace,TransferFunctionorZerosPolesGain) - 2: array_like: (numerator, denominator)
dt: float, optional
Sampling time [s] of the discrete-time systems. Defaults to None (continuous-time). Must be specified as a keyword argument, for example,
dt=0.1.See also
ZerosPolesGain,StateSpace,lti,dlti,tf2ss,tf2zpk,tf2sosNotes
Changing the value of properties that are not part of the
TransferFunctionsystem representation (such as theA,B,C,Dstate-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, callsys = sys.to_ss()before accessing/changing the A, B, C, D system matrices.If (numerator, denominator) is passed in for
*system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g.s^2 + 3s + 5orz^2 + 3z + 5would be represented as[1, 3, 5])Examples
Construct the transfer function:
\[H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}\]>>> from scipy import signal
>>> num = [1, 3, 3] >>> den = [1, 2, 1]
>>> signal.TransferFunction(num, den) TransferFunctionContinuous( array([ 1., 3., 3.]), array([ 1., 2., 1.]), dt: None )
Contruct the transfer function with a sampling time of 0.1 seconds:
\[H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}\]>>> signal.TransferFunction(num, den, dt=0.1) TransferFunctionDiscrete( array([ 1., 3., 3.]), array([ 1., 2., 1.]), dt: 0.1 )
Attributes
AState matrix of the StateSpacesystem.BInput matrix of the StateSpacesystem.COutput matrix of the StateSpacesystem.DFeedthrough matrix of the StateSpacesystem.denDenominator of the TransferFunctionsystem.dtReturn the sampling time of the system, None for ltisystems.gainGain of the ZerosPolesGainsystem.numNumerator of the TransferFunctionsystem.polesPoles of the system. zerosZeros of the system. Methods
to_ss()Convert system representation to StateSpace.to_tf()Return a copy of the current TransferFunctionsystem.to_zpk()Convert system representation to ZerosPolesGain.- 1: