scipy.optimize.fmin_slsqp¶
- 
scipy.optimize.fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None, bounds=(), fprime=None, fprime_eqcons=None, fprime_ieqcons=None, args=(), iter=100, acc=1e-06, iprint=1, disp=None, full_output=0, epsilon=1.4901161193847656e-08, callback=None)[source]¶
- Minimize a function using Sequential Least SQuares Programming - Python interface function for the SLSQP Optimization subroutine originally implemented by Dieter Kraft. - Parameters: - func : callable f(x,*args) - Objective function. Must return a scalar. - x0 : 1-D ndarray of float - Initial guess for the independent variable(s). - eqcons : list, optional - A list of functions of length n such that eqcons[j](x,*args) == 0.0 in a successfully optimized problem. - f_eqcons : callable f(x,*args), optional - Returns a 1-D array in which each element must equal 0.0 in a successfully optimized problem. If f_eqcons is specified, eqcons is ignored. - ieqcons : list, optional - A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in a successfully optimized problem. - f_ieqcons : callable f(x,*args), optional - Returns a 1-D ndarray in which each element must be greater or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored. - bounds : list, optional - A list of tuples specifying the lower and upper bound for each independent variable [(xl0, xu0),(xl1, xu1),...] Infinite values will be interpreted as large floating values. - fprime : callable f(x,*args), optional - A function that evaluates the partial derivatives of func. - fprime_eqcons : callable f(x,*args), optional - A function of the form f(x, *args) that returns the m by n array of equality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_eqcons should be sized as ( len(eqcons), len(x0) ). - fprime_ieqcons : callable f(x,*args), optional - A function of the form f(x, *args) that returns the m by n array of inequality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ). - args : sequence, optional - Additional arguments passed to func and fprime. - iter : int, optional - The maximum number of iterations. - acc : float, optional - Requested accuracy. - iprint : int, optional - The verbosity of fmin_slsqp : - iprint <= 0 : Silent operation
- iprint == 1 : Print summary upon completion (default)
- iprint >= 2 : Print status of each iterate and summary
 - disp : int, optional - Over-rides the iprint interface (preferred). - full_output : bool, optional - If False, return only the minimizer of func (default). Otherwise, output final objective function and summary information. - epsilon : float, optional - The step size for finite-difference derivative estimates. - callback : callable, optional - Called after each iteration, as - callback(x), where- xis the current parameter vector.- Returns: - out : ndarray of float - The final minimizer of func. - fx : ndarray of float, if full_output is true - The final value of the objective function. - its : int, if full_output is true - The number of iterations. - imode : int, if full_output is true - The exit mode from the optimizer (see below). - smode : string, if full_output is true - Message describing the exit mode from the optimizer. - See also - minimize
- Interface to minimization algorithms for multivariate functions. See the ‘SLSQP’ method in particular.
 - Notes - Exit modes are defined as follows - -1 : Gradient evaluation required (g & a) 0 : Optimization terminated successfully. 1 : Function evaluation required (f & c) 2 : More equality constraints than independent variables 3 : More than 3*n iterations in LSQ subproblem 4 : Inequality constraints incompatible 5 : Singular matrix E in LSQ subproblem 6 : Singular matrix C in LSQ subproblem 7 : Rank-deficient equality constraint subproblem HFTI 8 : Positive directional derivative for linesearch 9 : Iteration limit exceeded - Examples - Examples are given in the tutorial. 
