#### Previous topic

scipy.interpolate.NearestNDInterpolator.__call__

#### Next topic

scipy.interpolate.CloughTocher2DInterpolator.__call__

# scipy.interpolate.CloughTocher2DInterpolator¶

class scipy.interpolate.CloughTocher2DInterpolator(points, values, tol=1e-6)

Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

New in version 0.9.

Parameters: points : ndarray of floats, shape (npoints, ndims); or Delaunay Data point coordinates, or a precomputed Delaunay triangulation. values : ndarray of float or complex, shape (npoints, ...) Data values. fill_value : float, optional Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is nan. tol : float, optional Absolute/relative tolerance for gradient estimation. maxiter : int, optional Maximum number of iterations in gradient estimation. rescale : bool, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude.

Notes

The interpolant is constructed by triangulating the input data with Qhull [R57], and constructing a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme [CT]. The interpolant is guaranteed to be continuously differentiable.

The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approximatively minimized. The gradients necessary for this are estimated using the global algorithm described in [Nielson83,Renka84]_.

References

 [R57] (1, 2) http://www.qhull.org/
 [CT] (1, 2) See, for example, P. Alfeld, ‘’A trivariate Clough-Tocher scheme for tetrahedral data’‘. Computer Aided Geometric Design, 1, 169 (1984); G. Farin, ‘’Triangular Bernstein-Bezier patches’‘. Computer Aided Geometric Design, 3, 83 (1986).
 [Nielson83] G. Nielson, ‘’A method for interpolating scattered data based upon a minimum norm network’‘. Math. Comp., 40, 253 (1983).
 [Renka84] R. J. Renka and A. K. Cline. ‘’A Triangle-based C1 interpolation method.’‘, Rocky Mountain J. Math., 14, 223 (1984).

Methods

 __call__(xi) Evaluate interpolator at given points.