scipy.interpolate.BSpline.integrate¶
- 
BSpline.integrate(a, b, extrapolate=None)[source]¶
- Compute a definite integral of the spline. - Parameters: - a : float - Lower limit of integration. - b : float - Upper limit of integration. - extrapolate : bool, optional - whether to extrapolate beyond the base interval, - t[k] .. t[-k-1], or take the spline to be zero outside of the base interval. Default is True.- Returns: - I : array_like - Definite integral of the spline over the interval - [a, b].- Examples - Construct the linear spline - x if x < 1 else 2 - xon the base interval \([0, 2]\), and integrate it- >>> from scipy.interpolate import BSpline >>> b = BSpline.basis_element([0, 1, 2]) >>> b.integrate(0, 1) array(0.5) - If the integration limits are outside of the base interval, the result is controlled by the extrapolate parameter - >>> b.integrate(-1, 1) array(0.0) >>> b.integrate(-1, 1, extrapolate=False) array(0.5) - >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.grid(True) >>> ax.axvline(0, c='r', lw=5, alpha=0.5) # base interval >>> ax.axvline(2, c='r', lw=5, alpha=0.5) >>> xx = [-1, 1, 2] >>> ax.plot(xx, b(xx)) >>> plt.show()   
