Chebyshev Module (numpy.polynomial.chebyshev)
This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a Chebyshev class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).
Chebyshev Class
| Chebyshev(coef[, domain, window]) | A Chebyshev series class. | 
 
Basics
| chebval(x, c[, tensor]) | Evaluate a Chebyshev series at points x. | 
| chebval2d(x, y, c) | Evaluate a 2-D Chebyshev series at points (x, y). | 
| chebval3d(x, y, z, c) | Evaluate a 3-D Chebyshev series at points (x, y, z). | 
| chebgrid2d(x, y, c) | Evaluate a 2-D Chebyshev series on the Cartesian product of x and y. | 
| chebgrid3d(x, y, z, c) | Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z. | 
| chebroots(c) | Compute the roots of a Chebyshev series. | 
| chebfromroots(roots) | Generate a Chebyshev series with given roots. | 
 
Fitting
| chebfit(x, y, deg[, rcond, full, w]) | Least squares fit of Chebyshev series to data. | 
| chebvander(x, deg) | Pseudo-Vandermonde matrix of given degree. | 
| chebvander2d(x, y, deg) | Pseudo-Vandermonde matrix of given degrees. | 
| chebvander3d(x, y, z, deg) | Pseudo-Vandermonde matrix of given degrees. | 
 
Calculus
| chebder(c[, m, scl, axis]) | Differentiate a Chebyshev series. | 
| chebint(c[, m, k, lbnd, scl, axis]) | Integrate a Chebyshev series. | 
 
Algebra
| chebadd(c1, c2) | Add one Chebyshev series to another. | 
| chebsub(c1, c2) | Subtract one Chebyshev series from another. | 
| chebmul(c1, c2) | Multiply one Chebyshev series by another. | 
| chebmulx(c) | Multiply a Chebyshev series by x. | 
| chebdiv(c1, c2) | Divide one Chebyshev series by another. | 
| chebpow(c, pow[, maxpower]) | Raise a Chebyshev series to a power. | 
 
Quadrature
| chebgauss(deg) | Gauss-Chebyshev quadrature. | 
| chebweight(x) | The weight function of the Chebyshev polynomials. |