numpy.percentile¶
-
numpy.
percentile
(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)[source]¶ Compute the qth percentile of the data along the specified axis.
Returns the qth percentile(s) of the array elements.
Parameters: a : array_like
Input array or object that can be converted to an array.
q : float in range of [0,100] (or sequence of floats)
Percentile to compute, which must be between 0 and 100 inclusive.
axis : {int, sequence of int, None}, optional
Axis or axes along which the percentiles are computed. The default is to compute the percentile(s) along a flattened version of the array. A sequence of axes is supported since version 1.9.0.
out : ndarray, optional
Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array a calculations. The input array will be modified by the call to
percentile
. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the contents of the input a after this function completes – treat it as undefined. Default is False. If a is not already an array, this parameter will have no effect as a will be converted to an array internally regardless of the value of this parameter.interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points
i < j
:- linear:
i + (j - i) * fraction
, wherefraction
is the fractional part of the index surrounded byi
andj
. - lower:
i
. - higher:
j
. - nearest:
i
orj
, whichever is nearest. - midpoint:
(i + j) / 2
.
New in version 1.9.0.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a.
New in version 1.9.0.
Returns: percentile : scalar or ndarray
If q is a single percentile and axis=None, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the percentiles. The other axes are the axes that remain after the reduction of a. If the input contains integers or floats smaller than
float64
, the output data-type isfloat64
. Otherwise, the output data-type is the same as that of the input. If out is specified, that array is returned instead.See also
Notes
Given a vector
V
of lengthN
, theq
-th percentile ofV
is the valueq/100
of the way from the mimumum to the maximum in in a sorted copy ofV
. The values and distances of the two nearest neighbors as well as the interpolation parameter will determine the percentile if the normalized ranking does not match the location ofq
exactly. This function is the same as the median ifq=50
, the same as the minimum ifq=0
and the same as the maximum ifq=100
.Examples
>>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) 3.5 >>> np.percentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) >>> np.percentile(a, 50, axis=1) array([ 7., 2.]) >>> np.percentile(a, 50, axis=1, keepdims=True) array([[ 7.], [ 2.]])
>>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=out) array([[ 6.5, 4.5, 2.5]]) >>> m array([[ 6.5, 4.5, 2.5]])
>>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a == b)
- linear: