numpy.ma.innerproduct¶
- 
numpy.ma.innerproduct(a, b)[source]¶
- Inner product of two arrays. - Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. - Parameters: - a, b : array_like - If a and b are nonscalar, their last dimensions must match. - Returns: - out : ndarray - out.shape = a.shape[:-1] + b.shape[:-1] - Raises: - ValueError - If the last dimension of a and b has different size. - See also - tensordot
- Sum products over arbitrary axes.
- dot
- Generalised matrix product, using second last dimension of b.
- einsum
- Einstein summation convention.
 - Notes - Masked values are replaced by 0. - Examples - Ordinary inner product for vectors: - >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 - A multidimensional example: - >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]]) - An example where b is a scalar: - >>> np.inner(np.eye(2), 7) array([[ 7., 0.], [ 0., 7.]])